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Abstract—Failures caused by electrostatic discharge (ESD)
compromise the reliability of embedded systems. Peripherals such
as the universal serial bus (USB) are particularly vulnerable,
as isolating them to avoid electromagnetic interference would
defy their purpose - facilitating communication with and/or by
the embedded system. Better understanding the propagation
of failures that result from ESD would facilitate defensive
development of hardware and software for embedded systems,
but is hampered by the lack of non-invasive and lightweight
instrumentation techniques. This paper proposes the use of
software instrumentation for monitoring the reaction of the USB
peripheral of an embedded system to ESD. It describes our efforts
towards detection and root cause analysis of ESD-induced failures
- correlating changes in the operation of the peripheral with the
specific pin subjected to ESD. The work described is intended as
proof-of-concept for the development and use of (in situ) software
instrumentation for lightweight acquisition of data that can be
used for runtime failure analysis and actuation of self-healing
mechanisms, as well as postmortem statistical analysis of system
reliability, availability, and survivability.

Index Terms—software monitoring, software instrumentation,
electromagnetic immunity, failure analysis, USB

I. INTRODUCTION

Electrostatic discharge (ESD), defined as the momentary
flow of charge between two objects at different electrical
potential, is a common cause of damage to and failure of
embedded systems and their peripherals. Preventing this dam-
age and failure, and mitigating its effects when it inevitably
occurs, is most effective when the root cause is known and
considered. The increasing complexity and shrinking form
factor of embedded systems significantly complicates root
cause analysis of failure, especially through methods that rely
on hardware instrumentation for collecting data about system
operation and failure [1].

The broad scope of the effects of ESD, which extends
beyond hardware and causes software failures and data cor-
ruption, necessitates the use of monitoring techniques that
can capture and reveal the internal ’state’ of the embedded
system as reflected in flags and registers. In one experiment,
we exposed a camera to ESD. The display screen on the back
of the camera became distorted to the point where no text
or image could be seen; the screen would light up, but was
blank. Further investigation (using a software-based monitor)
revealed that the blank display was the result of a software
failure caused by ESD. Determination of this root cause would

not have been possible with hardware probing alone, in part
because the failure data yielded by such probing lacks the
semantic context offered by state capture.

Software-based instrumentation, where a program is used
to monitor and record the state of the embedded system
offers a suitable compliment to hardware-based techniques.
A major benefit of software instrumentation, when correctly
implemented, is that it is non-invasive and does not alter the
environment being monitored. The ultimate goal of our work
is the development of software instrumentation algorithms and
techniques that are lightweight, accurate, and portable (across
platforms); and can be easily customized to monitor different
parts of an embedded system.

The work presented in this paper - software instrumentation
of the USB host controller - serves as a preliminary effort
and proof-of-concept. Extension of this work to concurrent
monitoring of several peripherals is in progress. We seek
to address a fundamental challenge in instrumentation of
embedded systems: eliminating both probing hardware and
software overhead. We expect the insights gained to a) fa-
cilitate identification of areas of an embedded system; e.g.,
specific pins; that are most vulnerable to the effects of ESD;
b) enable root cause analysis of failures caused by ESD; and
c) yield better understanding of hardware coupling paths of
ESD.

II. RELATED WORK

System monitoring techniques fall into one of three cat-
egories: hardware-based, software-based, or hybrids of the
two. Regardless of the category, a fundamental requirement
for any monitoring technique is that it not interfere with
regular operation of the system. Desirable features include
low overhead, low cost, accuracy, survivability (the ability to
continue monitoring despite the failure of parts of the system),
and high resolution. In this section, we elaborate on the success
of existing monitoring techniques in achieving these design
objectives and compare and contrast them to each other and to
our proposed approach. We presented a more detailed review
of existing techniques, with special focus on software, in a
recent paper [2].

In monitoring the effects of electromagnetic interference,
hardware-based monitoring techniques far outweigh others.
The general hardware-based approach is to subject a system to



electric (E) and magnetic (H) fields and observe the system-
or chip-level reaction, with the goal of identifying resulting
faults [3]–[5]. The main shortcoming of these methods is
that they are capable of detecting only the ultimate effect of
the failure; e.g., LCD disturbance or short circuits. Detection
of the root cause of the behavior, failure propagation, and
similarly insightful information is not possible. Furthermore,
these methods require direct access to the system by an
external measurement device, and embedding them to allow
runtime monitoring is impractical. Another shortcoming of
hardware-based techniques is the cost of the measurement
devices required.

Software techniques typically involve the generation of
softprobes to monitor hardware-independent information with
the intention of adding minimal to zero additional overhead
on the system. Softprobes are scripts that are triggered in
response to predefined events; e.g., changes to the value of
a register. The additional computations required can affect the
system performance and lower the accuracy of monitoring, as
the overhead based by the softprobes alters the system state.

This specific shortcoming - high overhead - is addressed
by Callanan et al. [6], whose technique allows the user to
set a predetermined threshold for the overhead. HCSM then
maximizes the number of events that it can monitor while
remaining under the target overhead. The authors apply the
technique to memory leak detection and bounds-checking,
both of which have relatively predictable effects on a system.
The unpredictable nature of the effects of ESD limits the utility
of techniques that are subject to hard constraints on overhead.
Our proposed approach has no such constraint, but we make
every effort to minimize the overhead incurred.

In addition to overhead, a second challenge faced by
software-based instrumentation is hardware failure: the soft-
ware application becomes useless if the system crashes. Our
approach is vulnerable to this challenge, which we are in the
course of addressing. The work of Li et al. [5] - a hardware-
based approach that involves an application that modifies the
functionality of the system in the event of component failure,
allowing for monitoring to continue. The article focuses on
the Xilinx XUPV2P board that is used to capture audio files
using different filter regions [5]. The goal of their work is
to demonstrate the usefulness of a partially-reconfigurable
monitor module. When a failure happens, instead of a full
system crash, the monitoring tool will determine what can
remain operational, and salvages any system functionality that
can be maintained. Significant redundancy is required for
such reconfiguration to be possible, and generalization of the
technique from one platform to another is rarely possible.

A hybrid hardware and software monitoring technique is
explained in [7], where the authors created a device that runs
on an FPGA board and plugs into a PCI/PCI-X socket on the
system. This separate device monitors the data bus to which
it is connected and can detect other components on the same
bus. The traffic on this shared bus is analyzed to determine
whether any component connected to it has failed. Based on
the failure detected, the monitor determines a recovery action

and sends the appropriate command over the bus. The recovery
actions can vary from rebooting the failed component, to
disconnecting a failed peripheral. Decoupling the monitor from
the system reduces overhead, but attaching the monitor is
invasive. The efficacy of this technique is limited, as a very
limited set of flags were monitored. Open source software is
the foundation for the hybrid approach proposed by Cataliotti
et al. for measuring power consumption [8]

Our earlier publication on this topic described a software-
based technique for monitoring the SD card peripheral of
a S3C2440 development board [2]. In preparation for this
case study, we investigated a number of existing software-
based tools for monitoring an embedded system subjected
to ESD. Three of them are noteworthy: usbmon, Keil, and
devmem. The first tool, usbmon [9], was determined to be
incapable of collecting sufficient data for fault localization,
primarily because low-level information about the hardware
could not be obtained. The debugger that is built into Keil
[10], an integrated development environment, was found to
have excessive overhead that limited the effectiveness of the
sampling. We determined that the JTAG adapter was the cause
of the problem, as its maximum clock rate is 1 MHz. The third
tool, devmem [11], required the use of multiple scripts for
instrumentation. The resulting overhead and invasive probing
interfere with the system’s performance, increasing the diffi-
culty of simulating a test environment that replicates a realistic
environment.

Our previous work [2], which analyzed the effect of ESD
on the secure digital (SD) peripheral, focused on determining
whether existing tools could suffice for collecting information
that would allow for root cause analysis of failures caused by
ESD. The conclusion we drew was that a purpose-built tool
was necessary, due to both overhead and reliability concerns
with existing tools. The work presented in this paper applies
the lessons learned in developing simple scripts whose lean
design increases the reliability and decreases the overhead
associated with monitoring. Throughout design and develop-
ment of the monitoring technique, scalability to additional
peripherals and generalization to other platforms were key
concerns.

III. PROPOSED APPROACH

When an embedded system experiences ESD, its effects can
flip bits in a data stream, change register values, cause timing
issues, or corrupt data; leaving an error that may be observable
at the software level. By observing and attempting to predict
these errors, we can detect ESD and respond to it in software
to create a more reliable system. Our approach to detection
of ESD involves modification of the software drivers for the
peripheral being studied, so they can be utilizes to log detailed
information on hardware and software errors.

Additional software generates continuous data transfer to
and from a peripheral, keeping the peripheral active. A high-
voltage ESD simulator such as a transmission line pulser
(TLP) is connected to an H-field or E-field probe and ESD
is injected on the device under test at predetermined voltages.



The probe is used to focus ESD injection on different pins
and busses used by the peripheral. Errors generated by the
software are then studied to determine how the peripheral is
vulnerable to ESD.

The experiments in this paper focus on the USB host in-
terface of the FriendlyArm Mini2440 embedded development
board, which has a Samsung S3C2440 ARM9 processor. The
host interface conforms to Open Host Controller Interface
(OHCI) specifications [12]. The system is configured with a
custom compiled Linux kernel, version 2.6.29, retrieved from
the FriendlyArm website [13].

Initially, the softprobe was implemented as a Linux kernel
module that sampled arbitrary registers. The objective was
to determine the hardware state of various subsystems from
control and status registers. Exposure to ESD changes the
state of the hardware, causing status registers to change. By
observing these changes in software, it can be determined if
and how the system has experienced ESD. The registers to
be sampled are specified in a configuration file, as shown in
Figure 1. Continual monitoring of these registers captures the
manifestation of errors caused by ESD.

The register reader kernel module is inserted, and a user
level program, myregrw, which continually instructs the mod-
ule on the registers to be read (based on the configuration file),
is launched. ESD is injected and the results are recorded for
later analysis. For the USB host interface, watching the group
of OHCI standard control and status registers at addresses
0x49000000 through 0x49000014 provides an indication of
how the USB hardware state is influenced by ESD. Table
I shows a number of failure states for the HcInterruptStatus
register.

This initial approach failed, for two reasons. Firstly, achiev-
ing a register sample rate sufficiently high for observing ESD-
induced errors proved to be difficult, due to data logging
bottlenecks. The software was empirically determined to be
capable of sampling one register approximately 342 times per
second. Assuming that the board executes one instruction per
cycle and that the register is reset after 1 instruction, this gives
a worst-case probability of 342

400∗106 ∗ 100 = 0.000856% of
observing an error in a status register before it is reset. Even
though this is worst-case analysis, the probability would have
to be improved by four orders of magnitude to approach even
a 10% observation rate. Secondly, the Linux drivers for the
hardware modify the control and status registers for devices
as well, so changes cannot be uniquely attributed to ESD. As
these drivers are given priority over user code, it is nearly
impossible to read the register values after the occurrence of
the error and before the hardware driver resets the registers.

Our second approach involved modification of the source
code for the hardware drivers themselves, as shown in Fig-
ure 2. Drivers for the peripherals being studied were built as
kernel modules, instead of being built directly into the Linux
kernel. Building drivers as a kernel module places them into
a separate module file that can be loaded manually, instead of
requiring the entire kernel to be rebuilt and reinstalled after
each modification to the drivers.

Fig. 1: Initial Approach: Register Sampling

Next, the drivers are modified to log details of software
failure. The debug configuration available in most drivers,
which gives some detail about driver state, is enabled. As
the default debug messages are not detailed enough for the
required analysis, the driver is then modified to record more
data to the system logs, via calls to printk(). This approach is
the least invasive to the driver software, since it requires only
trivial modifications. Data is logged to pinpoint the failure
within the communication protocol and hardware drivers.

For the USB host controller, two types of information are
logged: information from data structures in the USB driver
code, and execution paths through the driver. Some data struc-
tures are mapped to specific memory addresses that correspond
to registers for the USB host controller; these registers will
be logged. In the OHCI drivers, the struct ohci regs defines



Value Failure State Comments
0x00000001 SchedulingOverrun Hardware register value may change unexpectedly
0x00000010 UnrecoverableError System has experienced an unexpected error
0x00000020 FrameNumberOverflow Hardware register value may change unexpectedly
0x00000030 RootHubStatusChange Status change may be caused by ESD

TABLE I: HcIntteruptStatus Failure Modes

Fig. 2: Second Approach: Driver Modification

these mapped registers. The host controller driver consists of
several functions that are called when certain events occur;
for example, ohci irq is called when an IRQ occurs for the
host controller. Logging which function is being called gives
a rudimentary idea of the operational state of the hardware.

After modification, the driver module is recompiled and
downloaded to the device and the driver module is inserted
into the kernel. Then, software is run that repeatedly transfers
known data patterns to and from the peripheral being studied.
This keeps the peripheral active during the testing. As well,
it gives complete control over the software stack, eliminating
uncertainty over what bit patterns are being transferred to or
from the device. In our tests, we simply copied a file from a
USB drive to the device, causing communication to and from
the USB drive to the Host Controller.

Then, noise is injected using the TLP on the pins and busses
used by the peripheral. The data from the kernel drivers is
logged to one file using the Linux log processing tool syslog,
and the ESD pulse timestamps are logged to a separate file

Fig. 3: USB Host Hardware Schematic

for later analysis.
For the USB host hardware, ESD is injected on wiring

between the board’s USB port and CPU pins DN0 and DP0,
which drive the USB Data+ and Data- pins through a resistor
network as shown in Figure 3. Injection is also performed after
the resistor network directly on the Data+ and Data- pins.

Using the timestamps for each ESD injection, data logged
from the drivers can be correlated with an ESD injection of
a certain voltage and pulse width. This data can then be used
for a wide variety of applications in both hardware testing and
error recovery; examples include determining what hardware
needs reliability improvements and software recovery from
ESD.

IV. ANALYSIS

A. Data Format

The data generated for each ESD injection is split into
individual log files per injection. As well, several logs of
normal operation are captured to give a basis for predicting or
detecting ESD.

Every call to a function in the host controller driver gener-
ates a log entry containing a timestamp, the name of the host
controller driver function, and a dump of the values of all the
registers of the host controller at the time of the function call.

B. Individual Log Analysis

The results from an individual log, whether that log contains
events from the hardware being exposed to ESD or not, can
be seen as a series of states S1 → S2 → S3 → . . . where each
state represents the data logged from one driver function call
as the pair (function call, register values). This gives a linear
progression of the driver operation.

However, it is more useful to represent driver operation as a
digraph where the nodes are unique states in the log, and edges
are transitions between states, as in Figure 4. We can convert
the chain of original states S into a set of locally-unique states



Fig. 4: Graph of Abstract System States

(unique within the log) S′ and a list of state transitions in the
order they are performed.

Locally unique log states are generated by comparing the
function call and register values between the two, ignoring
the timestamps of the states and also the HcFmRemaining
and HcFmNumber registers, as those change every state and
add an additional layer of complexity to the analysis. If two
states match, they both refer to the same unique state. As states
are coalesced into locally unique states, the call order of the
unique states is noted.

C. Combined Log Analysis

In order to be able to draw conclusions from the entirety of
the data present, we must now generate a global state graph
containing states S′′ such that, if we let Li be the unique states
S′ of log i, S′′ = L1 ∪L2 ∪ · · · ∪Ln. Along with this global
state graph, each log’s state transition list must be updated to
reflect states in S′′ instead of the states in Li.

Performing the union of two locally-unique state sets
is somewhat complicated, since certain registers can have
different values every time the host controller driver is
started. These registers are HcPeriodCurrentED, HcBulkCur-
rentED, HcHCCA, HcControlHeadED, HcControlCurrentED,
and HcBulkHeadED. Since these registers hold pointers to
dynamically allocated memory regions, they change to point
to different regions when the driver restarts, but a difference
in one of their values between states from different logs does
not necessarily mean those states are not the same global state.
However, these registers cannot be ignored entirely, since they
do sometimes change in normal operation of the driver.

We therefore can write two comparison routines: weak-
compare, which compares states, ignoring registers that may
change between logs, and strong-compare, which compares
every register value between states, excluding HcFmNumber
and HcFmRemaining.

In order to prevent several unique states from one log being
assigned to the same globally unique state, each globally
unique state can only be associated with one unique state
from a log file. To implement this, a globally unique state
S′′i is represented as an array of log unique states, one for
each log having a state weakly comparing to all the other
states in S′′i , or ∅ if no state from that log corresponds to S′′i .
Figure 5 diagrams how different unique states from log files
are combined to represent globally unique states.

D. Interpreting the Globally Unique State Graph

Once the globally unique state graph is generated, it’s
possible to directly compare state transition patterns between
logs where the board was not exposed to ESD and logs
where the board was. We can thus determine the possible state
transitions between a known-good state to a known-bad state,
giving a starting point for root-cause analysis.

To find these states, we create a set of all state transitions
in the non-ESD-exposed logs, N , and another set of all state
transitions in the logs from ESD exposure, E. The difference
of these two sets, D = E−N , contains all state transitions that
may be a result of ESD exposure. The first state transition in
each error log that is also in D is thus the state transition where
abnormal behavior in the driver is first observed. Knowing
which transitions initially indicate ESD gives the ability to
detect when ESD injection occurs, as well as a starting point
for root-cause analysis.

V. RESULTS

Our results are based on 4 baseline logs without ESD expo-
sure and 18 logs with ESD exposure. Testing was performed
with a variety of voltages and ESD injection probes. From
these logs we derived a globally unique state graph with 78
vertices; 20 of those states were present in logs without ESD
exposure, and 74 in logs with ESD exposure. The baseline
logs had 29 state transitions, and the ESD exposed logs 179.
These data indicate that a marked difference between hardware
operating exposed to ESD and hardware operating normally
can be observed in software.

The error logs contained 10 unique initial state transitions
not present in the baseline logs. 8 of them transition into
states only found in ESD exposed logs, indicating that many
exposures to ESD result in the hardware transitioning to an
unexpected state. 2, however, transition to a state also present
in the baseline logs, implying that certain ESD exposures may
be able to cause unexpected transitions between otherwise
valid states.

Further analysis of the results presented here are needed
to determine how the effects of ESD exposure affect the
hardware. As well, additional testing, both for normal and ESD
exposed operation, needs to be performed to verify that our
results are applicable to the driver operating in general, and
not just the driver’s operation as recorded in the analyzed logs.

VI. POTENTIAL APPLICATIONS

The relationship between errors and ESD can be reversed,
allowing predictions about what pins have received ESD
based on errors the software experiences. As a result, using
only software, components that have received ESD can be
identified, either for replacement if the goal of the experiment
is to repair hardware, or for improvement, if the goal is to
reduce the effects of ESD on a peripheral.

Specific software errors or sequences of errors can be used
to predict that the hardware has experienced an ESD discharge.
Using this information, software can be written to recover from
ESD, possibly without having to entirely disable and re-enable



Fig. 5: Graph of Abstract States

the peripheral. Software may also be able to compensate for
the effects of ESD, allowing operation to continue in adverse
environments, albeit at the cost of reduced performance and
more software overhead.

VII. CONCLUSION

This paper discussed the process of porting a method of
testing ESD on a SD card using software to testing USB host
hardware. The goal from this work is to improve the technique
and allow the software to identify and self correct errors that
were caused from interference. The methodology behind the
software modifications will lead to the improvement of the
reliability of the system. This methodology also focuses on
reducing additional overhead on the test system and using
software to gather data for statistical analysis.
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